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ABSTRACT
In this paper, we address efficient sparse matrix-vector mul-
tiplication for matrices arising from structured grid prob-
lems with high degrees of freedom at each grid node. Sparse
matrix-vector multiplication is a critical step in the itera-
tive solution of sparse linear systems of equations arising in
the solution of partial differential equations using uniform
grids for discretization. With uniform grids, the resulting

linear system A~x = ~b has a matrix A that is sparse with
a very regular structure. The specific focus of this paper
is on sparse matrices that have a block structure due to the
large number of unknowns at each grid point. Sparse matrix
storage formats such as Compressed Sparse Row (CSR) and
Diagonal format (DIA) are not the most effective for such
matrices.

In this work, we present a new sparse matrix storage
format that takes advantage of the diagonal structure of
matrices for stencil operations on structured grids. Unlike
other formats such as the Diagonal storage format (DIA), we
specifically optimize for the case of higher degrees of free-
dom, where formats such as DIA are forced to explicitly rep-
resent many zero elements in the sparse matrix. We develop
efficient sparse matrix-vector multiplication for structured
grid computations on GPU architectures using CUDA [25].

1. INTRODUCTION
Structured grid computations form the basis for many im-

portant applications in computational science, and there is
great demand for accelerating these computations on mod-
ern heterogeneous architectures, such as GPU accelerators.
Numeric partial differential equation solvers often employ
structured grids to solve problems such as environmental
modeling [20]. Numerical computation software that can
solve structured grid problems such as PETsc [2] have re-
cently begun to implement portions of their solvers on GPU
accelerators, and achieving high-performance on these de-
vices has been shown to be a hard problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-5, March 3 2012, London, UK.
Copyright 2012 ACM 978-1-4503-1233-2 ...$10.00.

The formulation of many structured grid problems in-
volves the formation of a sparse matrix which models the
relationship between neighboring points in the problem grid
as a set of linear equations. The program then solves the

linear system A~x = ~b by performing sparse matrix-vector
multiplication repeatedly until the found ~x satisfies a con-
vergence condition, typically involving an error tolerance.

For such solvers, the sparse matrix-vector multiplication
is the primary bottleneck. A large body of research has
investigated the optimization of sparse matrix-vector mul-
tiplication on heterogeneous architectures, including GPU
architectures. This research has involved the optimization
of sparse matrix-vector multiplication using architecture-
specific optimizations as well as new layout formats for the
sparse matrix. However, the bulk of this research has fo-
cused on sparse matrices that encode linear equations of
scalar quantities. Many applications solve structured grid
problems on higher-dimensional entities, such as vectors and
matrices. Sparse matrices that encode linear equations on
vectors and matrices provide additional opportunities for ef-
ficient data layout for GPU architectures.

In this paper, we propose a new storage format, which we
call Column Diagonal Storage (CDS), for sparse matrices
that result from stencil computations on structured grids.
This new storage format is optimized for efficient storage
and computation on GPU architectures for diagonal sparse
matrices that arise from structured grid computations on
higher-dimensional entities.

This paper makes the following contributions:

• Proposes a new storage format for block-diagonal sparse
matrices which leads to higher performance for struc-
tured grid computations on GPU architectures

• Performs a detailed performance analysis of the pro-
posed matrix layout extension on many problem sizes
and dimensionalities

The rest of the paper is organized as follows. In Sec-
tion 2, we present background material about GPU comput-
ing, structured grid computations, and sparse matrix storage
formats. In Section 3, we present our sparse matrix storage
format for structured grid computations on GPUs. In Sec-
tion 4, we present an experimental evaluation of our storage
format. Related work is then presented in Section 5. Finally,
in Section 6, we conclude.
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Figure 1: Basic architecture of nVidia GPU architectures

2. BACKGROUND
In this section, we provide background information on

structured grid computations, sparse matrix-vector multi-
plications, and their implementation on GPU architectures.
We first discuss GPU architectures and their programming
models. We then address structured grid computations and
the sparse linear algebra systems that arise n this context.

2.1 Graphics Processing Units (GPUs)
Graphics Processing Units (GPUs) are massively-threaded,

many-core architectures with peak floating-point through-
put over 1 TFLOP/s. In recent years, these devices have
become increasingly programmable and therefore useful for
general purpose workloads. The HPC community in par-
ticular has invested many resources in improving the per-
formance of computational programs on GPU architectures.
For the purposes of presentation for this paper, we will only
consider nVidia GPU devices.

These devices offer interesting challenges for achieving
high-performance, but also have the potential to greatly ac-
celerate numeric programs compared to CPU implementa-
tions. In nVidia GPU architectures, there are on the or-
der of 512 streaming processors, arranged into blocks of 8-
32 per streaming multi-processor. Individual thread blocks
are scheduled onto the streaming multi-processors, and can-
not migrate after being scheduled. However, a single multi-
processor can concurrently handle several blocks of threads.
Figure 1 depicts the basic architecture.

Each thread has access to the GPU’s global, off-chip mem-
ory, as well as a shared scratch-pad memory which is shared
among all threads within a block. Thus, threads within a
block can communicate and exchange data through shared
memory. Threads can also issue barriers that cause all
threads within a block to synchronize. However, thread syn-
chronization is, in general, not feasible across blocks.

2.1.1 Programming Model
GPU devices are commonly programmed using low-level

programming models, of which the two most common are
CUDA [25] and OpenCL [18, 26]. In both models, the pro-
grammer writes an imperative program (called a kernel)
that is executed by each thread on the device. Threads
are spawned in blocks, which are 1-, 2-, or 3-dimensional
rectangular groups of cooperative threads. These blocks are
further arranged into a 1- or 2-dimensional grid of blocks.
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Figure 2: Distribution of threads in a GPU kernel

Both the size and number of thread blocks is fixed when
launching a GPU kernel and cannot be changed after the
threads have launched. This distribution of threads is de-
picted in Figure 2.

To hide memory latencies, it is common to schedule hun-
dreds of threads per block. The threads are scheduled on
the streaming processors at the granularity of warps, which
are 32 threads. The streaming processors are time-shared
between all warps currently active on the streaming multi-
processor, and thread context switches incur no overhead.

2.1.2 Challenges
When programming GPU devices, there are several sources

of inefficiencies that are somewhat unique to GPU architec-
tures. GPU devices provide a very high off-chip memory
bandwidth (144 GB/sec for Tesla C2050), but this band-
width is only achievable with coalesced access. If threads
executing concurrently on a streaming multi-processor issue
requests to contiguous memory locations, the requests can
be fulfilled concurrently by the memory system. If the re-
quests are not to contiguous memory, the memory system
will be forced to serialize the requests, leading to wasted
bandwidth.

Additionally, the shared scratchpad memory is a banked
memory architecture. If concurrently executing threads in
a block make requests to shared memory locations in the
same bank, a bank conflict will occur and the requests will
be serialized. Therefore, to achieve efficient access to shared
memory, concurrently executing threads should access mem-
ory belonging to different banks. Finally, all concurrently
executing threads in a block must issue the same instruc-
tion to the streaming processors. If threads exhibit diver-
gent control flow, then their execution will be serialized on
the streaming multi-processor, leading to wasted compute
resources and inefficiency.

2.2 Structured Grid Computations
Structured grid problems occur in many scientific domains,

including electromagnetics [22, 24], computational fluid dy-
namics (CFD) [1], environmental modeling [20] and astro-
physics [14]. Such problems are often formulated as dis-
cretizations of partial differential equations on structured
grids that represent surfaces or spaces. Generally, a struc-
tured grid problem involves the application of a stencil op-
erator to every point in an N -dimensional space.
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Figure 3: Application of the 2-D Laplacian stencil on a
2-D structured grid.

2.2.1 Stencil Operators
A stencil operator is defined as a function that computes a

value for a point in the structured grid based on the previous
value of the grid point and its neighboring points. A simple
2-dimensional Laplacian stencil operation can be defined as:

gi,j =ci,ji,j · fi,j + ci−1,j
i,j · fi−1,j + ci+1,j

i,j · fi+1,j+

ci,j−1
i,j · fi,j−1 + ci,j+1

i,j · fi,j+1

(1)

In this formulation, f is a 2-D array of values on the grid.
The notation fi,j denotes the value at index (i, j). The
coefficient ci,jl,m corresponds to a value that relates the two

points (i, j) and (l,m) in the grid, and may be unique for
each pair of points in the grid. We compute new values at
each point in the grid in g from the previous grid values in
f .

Figure 3 shows a visual depiction of the 2-D Laplacian
stencil operator on a small 2-D grid. Applying the stencil
to the red point computes a new value based on the current
value at the red point and the surrounding green points.
Care must be taken around the grid boundaries, however.
The blue point shows the stencil operator applied to a grid
point on the boundary. In this case, the non-existing grid
point is ignored and does not contribute to the computation.
However, different types of structured grid problems may
impose different handling of boundary cells, such as:

• Wrap around to the other side of the grid (periodic),

• Clamp to the nearest grid point

• Assign a constant to boundary cells

2.2.2 Solving Stencil Problems
Depending on the type of problem being solved, there are

two broad approaches for solving structured grid problems.
The first explicitly applies the stencil operator to every point
in the grid, producing a new grid of values from the original
grid. In imperative languages like C, this would be imple-
mented as a series of for loops that scan every point in the
grid and applies the stencil operator. However, not all types
of structured grid problems can be effetively solved using
this model.
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Figure 4: Example of a structured grid computation.

The second approach involves the formation of a linear
system of equations from the application of the stencil op-
erator on each grid point. The linear equations are encoded

into a linear system A~x = ~b. In many cases, ~b is known, and
the goal is to find ~x within some acceptable tolerance. An
initial guess ~x0 is used, and the system is repeatedly solved
using the result from the previous iteration until the toler-

ance is met (~b − ~xi ≤ ~ε). Such systems often require many
iterations to convergence, making the matrix-vector multi-
ply a very performance-critical component of the solver.

The sparse matrices formed for these problems have a
very regular structure. Since grid points are only related
to their immediate neighbors, the sparse matrix will have
diagonals of non-zero entries at regular intervals. The dis-
tance between these diagonals is dependant on the shape of
the stencil operation, but in general there are m diagonals,
where m is the number of “points” in the stencil. The num-
ber of “points” in a stencil is the number of grid elements
touched by each application of the stencil function.

As an example, consider the computation in Figure 4. A 2-
D Laplacian stencil operation is applied to a 4×4 structured
grid of points. The computation is performed by scanning
the entire grid, and applying the shown stencil. The tan
point is an arbitrarily selected point in the grid, and the
green points are the additional points needed to compute
the new value for the tan point. We see that each point
needs a total of five grid points in the computation, except
for the boundary points where points lying outside of the
grid are not considered.

This problem is formulated as a linear system of equations
by generating a 16×16 matrix of coefficients. Generally, for
an N ×M grid, the matrix will be of size (N ·M)× (N ·M).
Each row and column corresponds to one grid point, and
the element at index (i, j) is the coefficient that relates grid
point i to grid point j (e.g. Equation 1). Note that this
naturally extends to grids of any dimensionality. The grid
points are numbered, so an N -dimensional grid with bounds
(n0, n1, ..., nN ) will require a matrix of size (n0 ·n1 · ... ·ni)×
(n0 · n1 · ... · ni).

The resulting matrix for the sample problem is shown in
Figure 4. The gray elements represent non-zero values in
the sparse matrix. While the matrix is sparse, it does have
a very regular structure. In particular, there is one diagonal
for each stencil point.

49




3 0 5 0 0
0 2 0 1 0
1 0 6 0 9
0 8 0 2 0
0 0 3 0 7


(a) Original

arr : [3, 5, 2, 1, 1, 6, 9, 8, 2, 3, 7]

col : [0, 2, 1, 3, 0, 2, 4, 1, 3, 2, 4]

row : [0, 2, 4, 7, 9, 12]

(b) CSR

data :


x 3 5
x 2 1
1 6 9
8 2 x
3 7 x


diag : [−2, 0, 2]

(c) DIA

data :


3 5 x
2 1 x
1 6 9
8 2 x
3 7 x



col :


0 2 x
1 3 x
0 2 4
1 3 x
2 4 x


(d) ELLPACK

Figure 5: Examples of sparse matrix layouts

2.2.3 Degrees of Freedom
An interesting case arises when we consider structured

grids containing higher-dimensional entities. For example,
many applications of structured grids use vector quantities
at grid points and matrices as the coefficients that relate the
grid points. The linear equations formed for such problems
are thus linear equations of vectors and matrices, requiring
matrix-vector operations at each stencil application instead
of simple scalar arithmetic. For such problems, if the vectors
are of size n and the matrices are of size n× n, we say that
the problem has n degrees of freedom.

A large body of research has focused on optimizing sparse
matrix-vector multiplication for different matrix storage for-
mats on various architectures, including SMP systems and
GPU accelerators. However, much of this research has fo-
cused on the scalar case (one degree of freedom in the prob-
lem). As we will show in Section 3, the storage format for
sparse matrices representing structured grid problems with
more than one degree of freedom has a significant impact on
both the memory efficiency of the storage format, as well as
the performance of sparse matrix-vector multiplication code.

2.3 Sparse Matrix Storage Formats
Prior work has proposed several sparse matrix storage

formats, each optimized for different use-cases. The per-
formance of these storage formats has been analyzed for
various problem domains by many researchers. In this sec-
tion, we explore three of the previously proposed formats:
Compressed Sparse Row (CSR), Diagonal (DIA), and ELL-
PACK.

2.3.1 CSR
Compressed Sparse Row (CSR) is a matrix storage tech-

nique that aims to minimize the storage requirement for gen-
eral sparse matrices. In this format, the non-zero elements
of the sparse matrix are collapsed into a dense array (arr),
and two additional vectors are used to track the column in-
dex of each non-zero element (col) and the offset into arr of
the start of each row (row).

If Nnz is the number of non-zero elements in the sparse
matrix and Nr is the number of rows, |arr| = |col| = Nnz

and |row| = Nr + 1. For every element in arr, the col
vector stores the column number of the element in the sparse
matrix. The row vector stores the offset into arr for the start
of each row, with the convention that row[Nr] = Nnz + 1.
Otherwise, we would not know the value of Nnz.

As an example, consider the CSR format of the sparse
matrix in Figure 5. The original sparse matrix is shown
in (a) and the CSR representation is shown in (b).

2.3.2 DIA
The Diagonal (DIA) [27] matrix storage format is specially

optimized for sparse matrices composed of non-zero elements
along diagonals. In this format, the diagonals are laid out
as columns in a dense matrix structure (data), starting with
the farthest sub-diagonal and ending with the largest super-
diagonal. An additional vector (diag) is kept which main-
tains the offset of the diagonal represented by column i in
data from the central diagonal. Since the structure of the
matrix is known, this storage format does not require col-
umn offset or row pointer vectors like CSR, leading to a
lower storage overhead.

Consider the sparse diagonal matrix in Figure 5(a) and its
DIA representation in (c). The x elements in the data ma-
trix represent unused elements that are needed to pad the
diagonals into full columns. Unlike CSR, the DIA matrix
layout is more efficient for diagonal matrices and allows con-
tiguous memory access when reading matrix elements along
diagonals.

2.3.3 ELLPACK
The ELLPACK [15] matrix format is another space-efficient

technique for storing sparse matrices. If K is the largest
number of non-zero elements per row of an N ×M matrix,
the ELLPACK format stores the matrix as an N ×K dense
matrix (data), along with a column index matrix (col) that
stores the column index of each element. For rows that con-
tain less than K non-zero elements, the matrices data and
col are padded with unused elements.

Consider the example in Figure 5. The ELLPACK repre-
sentation of the sparse matrix is shown in (d).

2.3.4 Comparisons
The CSR, DIA, and ELLPACK sparse matrix layouts are

all commonly used to efficiently store sparse matrices. For
the sparse matrix in Figure 5, the equivalent matrix in the
other matrix layouts is shown. In addition to the difference
in storage size, these three layouts offer various trade-offs.
The CSR representation can efficiently represent any sparse
matrix structure, but requires indirection through the col
and row vectors for each matrix access. In contrast, the
DIA representation is more efficient and does not require
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indirection through an addition array for all accesses, but
is only efficient for sparse matrices with non-zeros along di-
agonals. Finally, the ELLPACK representation offers an ef-
ficient storage format if the maximum number of non-zero
elements in all rows is significantly less than the number of
columns in the sparse matrix.

3. COLUMN DIAGONAL STORAGE (CDS)
In this work, we introduce a new sparse matrix storage

format that takes into account the block-diagonal structure
found in structured grid computations involving problems
with degrees of freedom greater than one. Consider the
block-diagonal sparse matrix in Figure 6. Colors are used to
differentiate between the block diagonals, and empty spaces
represent zero values. This matrix contains block diagonals
that represent 2× 2 dense matrices. There are three diago-
nals of dense blocks in the sparse matrix, but if we consider
the matrix as a general diagonal-sparse matrix then we have
nine diagonals that contain non-zero elements.

Therefore, the standard DIA storage format will require us
to represent nine diagonals, including the zero values that
occur within “sparse“ diagonals. Figure 6 shows the DIA
representation for this sparse matrix. Clearly, there is a
large fraction of wasted space used to store zero and unused
elements. When performing sparse matrix-vector multipli-
cation, there will also be a significant amount of wasted work
multiplying by zero using this representation.

If we instead try to directly modify the DIA layout to con-
sider the N ×N sub-matrices as atomic blocks by lineariz-
ing the sub-matrices into columns in the formatted matrix,
we can reduce the amount of wasted space in the DIA for-
mat for higher degrees of freedom. However, this leads to
non-contiguous memory access across cooperating threads
in thread blocks. As we will show, our proposed CDS stor-
age format minimizes wasted space as well as maximizing
memory coalescing across threads.

3.1 Block-Diagonal Layout
Instead of considering just the diagonals of the sparse ma-

trix which contain non-zero elements, we propose to store
the matrix according to its block-diagonal structure. For
the sparse matrix in Figure 6, we consider three diagonals
composed of 2× 2 blocks instead of nine diagonals of scalar
entities. We then layout each diagonal by linearizing the
columns in each block. We start with the first column of the
first block, then the first column of the second block, and
so forth for each block. We then proceed to layout the sec-
ond column of each block. This continues until all columns
have been laid out. This procedure is then repeated for each
diagonal.

For a block-diagonal sparse matrix with k diagonals and
blocks having b columns, this storage format will require
k · b columns. If n is the length of the main diagonal of the
sparse matrix, then k·b·n is then the storage requirement for
our compact representation. Like the DIA storage format,
we also maintain a vector containing the diagonal number
for each column. However, since each group of b columns
correspond to the same diagonal, we only need to store k
diagonal indices. Therefore, the total storage requirement
is k · b · n + k. Figure 6 shows an example of our proposed
layout format.

3.2 Overhead and Performance
Compared to the DIA storage format, we incur less storage

overhead for block-diagonal sparse matrices. If the block size
is 1× 1, then our format reduces to the DIA format. How-
ever, as we increase the block size we see that the amount of
wasted space decreases compared to the DIA format. The
benefits of this are two-fold. First, we require less total
memory to store the sparse matrix. This is particularly im-
portant on accelerator devices with limited memory. Mod-
ern GPU accelerators have up to 3GB of off-chip storage,
while high-performance CPUs typically have 32-64GB. Sec-
ond, eliminating the zero values from the representation al-
lows us to also eliminate the useless computation that results
from using the zero values. The contribution of these ele-
ments to the entire matrix-vector multiplication will be zero,
so we do not need to compute the result.

3.3 CUDA Implementation
For evaluation of our proposed sparse matrix layout, we

implemented a sparse matrix-vector kernel in CUDA [25]
using our storage format. The kernel implements sparse
matrix-vector multiplication for any number of degrees of
freedom. For efficiency, we store the vector ~x as a texture
and access it through texture fetches. This allows us to make
use of the texture cache available on the GPU.

We linearize the columns of each diagonal to ensure we

have contiguous access along the output vector ~b. We sched-

ule one thread for each element of~b, and neighboring threads
will access columns of the sparse matrix. Therefore, the
column-major ordering ensures memory coalescing. As a re-
sult of this, the access to ~x is not contiguous for neighboring
threads. However, most accesses to ~x will be to the same el-
ement for neighboring threads so broadcast reads and caches
are effective. In particular, storing ~x as a texture and mak-
ing use of the texture cache leads to increased performance.

4. EVALUATION
To evaluate the performance of our proposed sparse ma-

trix storage format, we implemented sparse matrix-vector
multiplication kernels for our sparse matrix storage format
using CUDA 4.0 [25] and evaluated performance on various
data sets for different nVidia GPU architectures, including
GTX 280, Quadro Plex S2200 S41, Tesla C2050, and GTX
580. The characteristics of these GPUs are described in Ta-
ble 1.

For comparison, we use the CSR-based structured grid
solver found in the PETsc [2] library. Additionally, we used
DIA-based and ELLPACK- based sparse matrix-vector ker-
nels from Cusp [6] to compare performance with other stor-
age formats. We compare the performance of our storage
format by looking at device floating-point throughput for
different problem sizes and degrees of freedom.

4.1 DoF Scaling
As our proposed sparse matrix storage format is made to

efficiently handle matrices that arise from structured grid
problems with high degrees of freedom, we evaluate the per-
formance of the kernels as we vary the degrees of freedom
in the problem. We selected four representative problem

1The Quadro Plex S2200 S4 unit has four GPU chips ex-
posed as four separate CUDA devices. For this paper, we
only consider one GPU.

51



0 2

1 3

4 6

5 7

8 10

9 11

12 14

13 15

0 2

1 3

4 6

5 7

0 2

1 3

4 6

5 7

0

3

4

7

8

11

12

15

1

0

5

0

3

4

7

0

1

0

5

0

0

3

4

7

0

1

4

5

8

9

12

13

0

1

4

5

2

3

6

7

2

3

6

7

10

11

14

15

0

1

4

5

2

3

6

7

Block-Diagonal Sparse Matrix DIA Representation Column Diagonal Representation

2

0

6

0

0

1

0

5

0

9

0

13

2

0

6

0

10

0

14

2

0

6

-5 -4 -3 -1 0 1 3 4 5 -2 0 -2

0 2 0 2 1 3 1 3 4 6 5 74 6 5 7

8 10 9 110 2 1 3 12 14 13 154 6 5 7

...

...

0 1 4 5 0 1 4 5 2 3 2 36 7 6 7

4 5 4 50 1 0 1 6 7 6 72 3 2 3

...

...

0 4 8 12 16 20 24 28 33

CSR Representation

Figure 6: Layout of a sparse matrix for CSR, DIA, and our proposed Column Diagonal formats. The sparse matrix is
block-diagonal with a block size of 2× 2.

sizes (two 2-D and two 3-D), and measured the achieved
GFLOP/s for our kernels, the CSR-based kernel from PETsc,
and the DIA- and ELLPACK-based kernels from Cusp. Fig-
ure 7 shows the results of this experiment. For the shown
problem size N , the sparse matrix is of size N×N , so a prob-
lem size of 643 involves a 643×643 sparse matrix. We present
results using both single- and double-precision floating-point
values.

From these results, we see that our kernel equals the per-
formance of the DIA- based kernel for one degree of freedom,
across all GPUs and all problem sizes. However, as we in-
crease the degrees of freedom in the structured grid problem,
the performance of the DIA-based kernel deteriorates, while
the performance of the kernel using our proposed storage
format improves. We also generally perform better than the
ELLPACK-based implementation, due to better use of the
texture cache when accessing the vector ~x. Both our format
and the Cusp implementation of ELLPACK make use of the
texture cache, but we achieve a higher cache hit ratio. Espe-
cially on the newer Fermi-based GTX 580 and Tesla C2050
cards, we significantly out-perform all other storage formats
that we tested.

We see that the GTX 280 generally performs better than
the Quadro Plex S2200 for these kernels. Even though both
are based on the same architecture, the GTX 280 has higher
off-chip bandwidth because the Quadro Plex S2200 incurs
overhead from using ECC memory. Since no reuse is pos-
sible in the sparse matrix and each element is only used
in a single multiply-add pair of instructions, such kernels
are memory bandwidth bound. Clearly, the GTX 580 per-
forms the best across the board due to its higher off-chip
bandwidth and floating-point throughput. The Tesla C2050
results are similar to the GTX 580 results, but lower off-chip
memory bandwidth leads to lower performance.

GTX Quadro GTX Tesla
280 S2200 S4 580 C2050

# SMs 240 240 (x4) 512 448

Memory 1 GB 4 GB 1.5 GB 3 GB

Compute 1.3 1.3 2.1 2.0

Peak B/W 141.7 GB/sec 102 GB/sec 192 GB/sec 144 GB/sec

Table 1: GPUs used for testing sparse matrix-vector im-
plementations

Across all problems, the CSR representation performs the
worst of all four. The CSR representation of sparse matrices
is the most general of the four storage formats we tested, but
the matrices from structured grids that we are considering
give us a lot of opportunity for layout-specific optimizations.
The DIA representation is a good choice for structured grid
matrices, and we can see that the performance is signifi-
cantly improved over the CSR representation. However, in
the majority of cases, our proposed column-diagonal storage
format leads to better performance than the DIA represen-
tation.

The benefit of the new proposed storage format is partic-
ularly significant at higher degrees of freedom. For matrices
that result from structured grid computations with high de-
grees of freedom, the DIA storage format has to explicitly
store many zero elements in the diagonals. Our storage for-
mat, in contrast, does not suffer from this and results in
fewer computations that do not contribute to the final re-
sult. Since our storage format does not lose performance
with only one degree of freedom, it can be used for all prob-
lems instead of forcing the user or library to choose a storage
format based on the problem.
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Figure 7: Performance scaling across degrees of freedom
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Figure 8: Bandwidth utilization for our tested kernels.

4.2 Bandwidth Utilization
GPU devices offer high off-chip memory bandwidth, but

maximizing the achievable bandwidth is often a difficult
optimization problem. Sparse matrix-vector multiplication
kernels in particular are sensitive to memory bandwidth
since there is very little reuse across the data arrays. In
general, there will only be a single multiply-add pair for
each matrix element. Therefore, it is very important to op-
timize the kernel to maximize the off-chip bandwidth while
reading matrix elements.

In Figure 8, we show the off-chip bandwidth achieved for
our kernels. For each GPU, we show the off-chip bandwidth
achieved for our column-diagonal kernel on two problem
sizes, as well as for the Cusp diagonal kernel. On the same
graph, we show the peak bandwidth available on each de-
vice. From these graphs, we see that our implementation of
the column-diagonal kernel is able to achieve higher off-chip
bandwidth than the Cusp diagonal kernel in most cases.

An interesting trend in these results is the achieved band-
width as the degrees of freedom are varied. On the GTX
280, the bandwidth is clearly higher for odd degrees of free-
dom. However, on the GTX 580, the achieved bandwidth
does not vary much. An increase in the achieved band-
width, however, is not necessarily an indicator of increased
performance. As shown in Figure 7, the GTX 280 achieves
high performance on even degrees of freedom. This leads us
to the conclusion that the problems with an odd degree of
freedom are pulling more data across the memory bus, but

this extra data is actually not used since there are unused
threads. On the GTX 580, the effect is not as pronounced
since the per-SM L1 cache is able to service these extraneous
requests.

5. RELATED WORK
Sparse matrix-vector multiplication is a core computation

in many numeric applications, and there is a large body
of related work on the subject. In recent years, many re-
searchers have looked at sparse matrix-vector multiplication
on off-chip accelerators such as GPUs and other parallel ar-
chitectures.

Azevedo et al. [9] proposed a technique for vectorizing
sparse matrix-vector multiplication on vector architectures
such as the Cray X-1 using a variation of the CSR storage
format.

Some of the first work on sparse matrix-vector multipli-
cation on GPU architectures was by Bolz et al. [7]. They
implemented conjugate gradient and multigrid solvers on a
GPU by using the graphics pipeline. Kruger et al. [19] ex-
plored the use of the graphics pipeline to implement sparse
matrix-vector multiplication and grid- based solvers. Geveler
et al. [13, 12] presented a framework for solving multi-grid
problems on GPUs by decomposing the solver into a se-
quence of sparse matrix-vector multiplications.

Baskaran et al. [3] performed optimizations on sparse matrix-
vector multiplication kernels using the CSR matrix format.
They performed device-specific optimizations for both the
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nVidia 8800 GTX and GTX 280 GPUs. They considered
general, unstructured matrices. On the GTX 280, they
achieved up to 14.02 GFLOP/s on the protein benchmark.
Garland [11] presented an approach to perform sparse matrix-
vector multiplication using data parallel primitives such as
map, scan, and reduce.

Prior work has also focused on the effects of sparse matrix
storage formats. Vázquez et al. [29] proposed a new storage
format, ELLPACK-R, based on the ELLPACK [15] storage
format. This new format reduces the computation and data
access compared to the ELLPACK format by using an addi-
tional row vector to store the number of non-zeroes per row.
They also proposed a new format called the Padded Jagged
Diagonals Storage (PJDS) format based on the ELLPACK-
R and Jagged Diagonals Storage (JDS) format. Their PJDS
implementation achieved up to 27.6 GFLOP/s on an nVidia
Tesla C2070 in single-precision mode. PJDS is less efficient
than our proposed format for structured grid computations
since it has twice the number of global memory accesses due
to the column index storage. Monakov et al. [21] proposed
a storage format based on ELLPACK, called sliced ELL-
PACK that performs ELLPACK layout on adjacent rows of
the sparse matrix. They achieve up to 21.48 GFLOP/s on
an nVidia GTX 280 GPU in single-precision. Bell et al. [4, 5]
examined a range of matrix layout formats for sparse matri-
ces using CUDA on the nVidia GTX 280 GPU. They found
that the DIA [28] and ELLPACK formats achieve the best
performance on structured matrices that result from stencil
computations. Our experimental results demonstrate that
the CDS format proposed here achieves higher performance
for such matrices than the DIA or ELLPACK formats.

The Blocked CSR matrix format was introduced by Im
et al. [16, 17]. This format is a variant of CSR that al-
lows for register blocking on CPU architectures. This for-
mat performs better than the CSR format but because of
the parallel reduction step, it performs worse than the CDS
format. Montagne [23] and Ekambaram [10] proposed the
Transpose Jagged Diagonal Storage (TJDS) format, which
builds upon the Jagged Diagonal Storage (JDS) format by
collapsing the non- zero elements along columns instead of
rows. The resulting storage requirement is O(Nnz + Ntjd)
instead of O(Nnz + N + Njd) for JDS, where Nnz is the
number of non-zeros in the sparse matrix, and Ntjd and Njd

are the number of transpose jagged diagonals and jagged
diagonals, respectively.

Research has also been conducted on auto-tuning sparse
matrix-vector implementations for GPUs. Choi et al. [8] pro-
posed an auto- tuning framework for sparse matrix-vector
kernels using blocked CSR and blocked ELLPACK matrix
storage formats. The Blocked ELLPACK format rearranges
the rows of the sparse matrix in decreasing order of the
number of non-zero elements. The rows are then separated
into blocks, where each block is stored in the ELLPACK
format. This formats achieves a significant increase in per-
formance compared to ELLPACK in unstructured grid prob-
lems where the number of non-zeroes per row varies greatly.
However, it does not provide much performance improve-
ment over ELLPACK in structured grid applications , where
the number of non- zeroes per row is nearly constant. Choi
et al. [8] achieved up to 29.0 GFLOP/s in single-precision
on an nVidia Tesla C1060 GPU.

6. CONCLUSION
In this paper, we have introduced a new sparse matrix

storage format that is specially optimized for block-diagonal
sparse matrices that result from structured grid computa-
tions with more than one degree of freedom. We have shown
that the performance of CUDA kernels using this format ex-
ceeds that of previously proposed storage formats for more
than one degree of freedom, including the often used DIA
and CSR storage formats.
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